derdava.data_valuation package#
- class derdava.data_valuation.ValuableModel(support: tuple, model_utility_function: ModelUtilityFunction)[source]#
Bases:
object
Main class used for data valuation.
- __init__(support: tuple, model_utility_function: ModelUtilityFunction)[source]#
Creates a
ValuableModel
.- Parameters:
support – A tuple containing the indices of data sources in the support set.
model_utility_function – A
ModelUtilityFunction
object.
- valuate(data_valuation_function='dummy', **kwargs)[source]#
Performs data valuation.
- Parameters:
data_valuation_function –
The data valuation function to be used. It supports the following options:
Dummy:
'dummy'
(always assigns \(0\) to all data sources);Semivalues:
'loo'
,'shapley'
,'banzhaf'
,'beta'
;Monte-Carlo approximation of semivalues:
'monte-carlo shapley'
,'monte-carlo banzhaf'
,'monte-carlo beta'
;DeRDaVas:
'robust loo'
,'robust shapley'
,'robust banzhaf'
,'robust beta'
;012-MCMC approximation of DeRDaVas:
'012-mcmc robust loo'
,'012-mcmc robust shapley'
,'012-mcmc robust banzhaf'
,'012-mcmc robust beta'
;Risk-DeRDaVas:
'risk averse robust shapley'
,'risk averse robust banzhaf'
,'risk averse robust beta'
,'risk seeking robust shapley'
,'risk seeking robust banzhaf'
,'risk seeking robust beta'
.
Note
When any
'beta'
or its variants is selected asdata_valuation_function
, you need to pass in two additional keyword argumentsalpha
andbeta
(both are positive numbers).When any DeRDaVa is used, you need to specify one keyword argument
coalition_probability
of classCoalitionProbability
.When any Monte-Carlo or 012-MCMC approximation is used, you need to specify one keyword argument
tolerance
(default1.005
).