derdava.data_valuation package#
- class derdava.data_valuation.ValuableModel(support: tuple, model_utility_function: ModelUtilityFunction)[source]#
Bases:
objectMain class used for data valuation.
- __init__(support: tuple, model_utility_function: ModelUtilityFunction)[source]#
Creates a
ValuableModel.- Parameters:
support – A tuple containing the indices of data sources in the support set.
model_utility_function – A
ModelUtilityFunctionobject.
- valuate(data_valuation_function='dummy', **kwargs)[source]#
Performs data valuation.
- Parameters:
data_valuation_function –
The data valuation function to be used. It supports the following options:
Dummy:
'dummy'(always assigns \(0\) to all data sources);Semivalues:
'loo','shapley','banzhaf','beta';Monte-Carlo approximation of semivalues:
'monte-carlo shapley','monte-carlo banzhaf','monte-carlo beta';DeRDaVas:
'robust loo','robust shapley','robust banzhaf','robust beta';012-MCMC approximation of DeRDaVas:
'012-mcmc robust loo','012-mcmc robust shapley','012-mcmc robust banzhaf','012-mcmc robust beta';Risk-DeRDaVas:
'risk averse robust shapley','risk averse robust banzhaf','risk averse robust beta','risk seeking robust shapley','risk seeking robust banzhaf','risk seeking robust beta'.
Note
When any
'beta'or its variants is selected asdata_valuation_function, you need to pass in two additional keyword argumentsalphaandbeta(both are positive numbers).When any DeRDaVa is used, you need to specify one keyword argument
coalition_probabilityof classCoalitionProbability.When any Monte-Carlo or 012-MCMC approximation is used, you need to specify one keyword argument
tolerance(default1.005).